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In this paper, we investigate some curvature problems of  Kenmotsu manifolds satisfying some 

certain conditions and we reach some classicifications. We consider  -recurrent  Kenmotsu 

manifolds and we show that  -recurrent  Kenmotsu manifolds are also  -Einstein manifolds. Next, 

we study   -Ricci symmetric  Kenmotsu manifolds and we find this manifolds are Einstein 

manifolds too. In addition, we examine locally  -symmetric  -Kenmotsu manifolds. Later we 

investigate this type manifold with quasi-conformally curvature tensor and concircular curvature 
tensor. In addition to these, we construct an example of  Kenmotsu manifolds and we see that this 

example is a locally  symmetric  Kenmotsu manifold. 

 
Key words:  Kenmotsu manifold,  -recurrent,  -Ricci symmetric, locally  -symmetric, concircular 

curvature tensor, quasi-conformally curvature tensor,  -Einstein manifolds, Einstein manifolds. 

 
 
INTRODUCTION 
 
Janssens and Vanhecke (1981) define  Kenmotsu 

manifolds. These are trans-sasakian of type (0,  ) in J. 

A. Oubina's sense (Oubina, 1985). Öztürk et al. (2010) 
study about  Kenmotsu manifolds satisfying some 

curvature conditions. Dileo (2011) write paper named “A 
classification of certain almost  Kenmotsu manifolds”. 

On the other hand De (2014) study globally  quasi-

conformally symmetric  Kenmotsu manifold and give 

some examples 3-dimensional  Kenmotsu manifolds. 

We generally have interest on conditions about curvature 
tensor, because curvature tensors play important role in 
geometry   and    physics.    For    example;     concircular 

transformation transforms every geodesic circle of a 
Riemannian manifold M into a geodesic circle. An 
interesting invariant of a concircular transformation is the 
concircular curvature tensor (Yano, 1940). In this paper, 

we study  -recurrent  Kenmotsu manifolds. In 

additon to this, we investigate  ricci symmetric 

 Kenmotsu manifolds and show that  ricci 

symmetric  Kenmotsu manifolds are Einstein 

manifolds. In differential geometry and mathematical 
physics, an Einstein manifold is a Riemannian or pseudo- 
Riemannian     manifold     whose      Ricci      tensor      is 
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proportional to the metric. They are named after Albert 
Einstein because this condition is equivalent to saying 
that the metric is a solution of the vacuum Einstein field 
equations (Besse, 1987). Next, we deal with locally 
 symmetric  Kenmotsu manifolds and we prove 

some theorems about the scalar curvature of the 
manifolds. In addition to these, we consider quasi-
conformally flat condition on this type manifolds. We find 
interesting results when we investigate concircularly flat 
condition on locally  symmetric  -Kenmotsu 

manifolds. 
 
 
MATERIALS AND METHODS 

 
Let (M; g) be an (2n + 1)-dimensional Riemannian manifold. We 

denote by   the covariant differentiation with respect to the 

Riemannian metric g. The Ricci tensor of M are defined by 

 

 
   






12

1

,,,,
n

i

ii eYXeRYXS

                              (1) 

 

where  1221 ...,,, neee  is a locally orthonormal frame and X, Y 

are vector fields on M. The Ricci operator Q is a tensor field of type 

(1,1) on M defined by 

 

   YXSYQXg ,,                                 (2) 

 
for all vector fields on TM. 

Let M be an (2n+1)- dimensional 
C  manifold and  M  the Lie 

algebra of 
C vector fields on M. An almost contact structure on M 

is defined by (1,1) tensor field  , a vector field   and a 1-form   

on M. If   ,,  satisfy the following condition then   ,,  is 

said to be almost contact structure,  
 

    I2,1                 (3) 

 

0,0                     (4) 

 
where I denotes the identity transformation of the tangent space 

MTp  at the point of p. Then M equipped with   ,,  almost 

contact manifold. M with metric tensor g and with a triple   ,,  

such that  

 

       YXYXgYXg   ,,                (5) 

 

and 

 

   XXg  ,                  (6) 

 

where  MYX , , is an  almost contact metric manifold. 
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Let  gM n ,,,,12 
 be an almost contact metric manifold and 

   YXgYX ,,   is the fundamental 2- form of M. M is 

called almost  -Kenmotsu manifold, if the 1- form   and the 2-

form   satisfy the following conditions: 
 

  2,0 dd                 (7) 

 

  being a non-zero real constant (Janssens and Vanhecke, 

1981). 
We have known that an almost contact metric manifold 

 gM n ,,,,12 
 is said to be normal if the Nijenhius tensor 

 

            YXdYXYXYXYXYXN ,2,,,,, 2 

 

vanishes for any  MYX , . Remarking that a normal almost 

 -Kenmotsu manifold is said to be  -Kenmotsu 

manifold  0  (Janssens and Vanhecke, 1981). Moreover, if 

the manifold M satisfies the following relations  
 

      XYYXgYX   ,               (8) 

 
and 
 

   XXX                                (9) 

 

then   gM n ,,,,12 
 is called  -Kenmotsu manifold (Pitiş, 

2007). 

A Riemannian manifold (M,g) is called a  recurrent Riemannian 

manifold, if the curvature tensor R  satisfies the following condition: 
 

       ZYXRWAZYXRW ,,2              (10) 

 
where A is 1-form (De et al., 2009; Yıldız et al., 2009).  

A Riemannian manifold (M,g) is called  Ricci symmetric, if its 

Ricci tensor S satisfies the following condition:  
 

   02  YQX                              (11) 

 

for all vector fields X and Y in TM (Shukla and Shukla, 2009).  A 

Riemannian manifold M is said to be locally  symmetric, if  

 

    0,2  ZYXRW                             (12) 

 

for all vector fields X,Y,Z,W orthogonal to  . This notion was 

introduced by Takahashi (Binh et al., 2002), for a Sasakian 
manifold. 

A Riemannian manifold (M,g) is called quasi-conformally flat if its 

quasi-conformal curvature tensor C , 
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satisfies 0C  , where r is the scalar curvature of (M,g). 

A Riemannian manifold (M,g)  is called concircularly flat if its 
concircular curvature tensor Z, 
  

 
 

    YWXgXWYg
nn

r
WYXRWYXZ ,,

122
,),( 


  

 
satisfies Z=0 , where r is the scalar curvature of (M,g). 
On an  Kenmotsu manifold M, the following relations are held 

(Janssens and Vanhecke, 1981): 
 

   XnXS  22,                (14) 

 

      XYYXgYXR   ,, 2
             (15) 

 

      XYYXYXR   2,              (16) 

 

       YXnYXSYXS  2,, 2                        (17) 

 

        YXYXgYX   ,               (18) 

 
 
 -RECURRENT  KENMOTSU MANIFOLDS 

 
Here, we find that a  recurrent  Kenmotsu 

manifold is an  Einstein manifold. 

 
 
Theorem  
 
A  recurrent  Kenmotsu manifold is an 

 Einstein manifold (Dogan, 2014).  

 
 
Proof   
 

Let  gM ,,,,   be a  recurrent  Kenmotsu 

manifold. In this case; Riemannian curvature tensor of M 
satisfy the following equation for all X,Y,Z  and W in TM: 
 

       ZYXRWAZYXRW ,,2   

 
From Equation (3), we get  
 

          ZYXRWAZYXRZYXR WW ,,,       (19)        

 

for all WZYX ,,,  in TM. If we take the inner product of 

Equation (19) with  MU  , we find 

   

        

     UZYXR

UZYXRgUZYXRgWA

W

W

 ,

,,,,





    (20)             

 
 
 
 

for all X,Y,Z,W,U  in TM. Then the sum for 121  ni  

of the relation (20) with ieUX   fields  

 

          ZYRZYSZYSWA WW ,,,   . (21) 

 

If we write   instead of Z, we get  

 

           YRYSYSWA WW ,,,  .   (22)      

 
From  Equations (9), (14) and (16), we get 
 
 

         

   .

,,122

3

32

YW

WYSYWgnYWAn









    (23)
   

If we write Y  and W  instead Y and W, respectively, 

we find 
  

     ,,,120 3 WYSYWgn                   (24) 

 
From Equations (5) and (17), we have  
 

         WYWYgnWYS  22 ,12,         (25) 

 
for all Y,W in TM. Then , M is an   Einstein manifold. 

 
 
 RICCI SYMMETRIC  KENMOTSU MANIFOLDS 

 
Here, we find that a  Ricci symmetric  Kenmotsu 

manifold is an Einstein manifold. 
 
 
Theorem   

 

Let  gM ,,,,   be a  Ricci symmetric 

 Kenmotsu manifold. Then M is an Einstein manifold. 

 
 
Proof 

 

Suppose that  gM ,,,,   is a  Ricci symmetric 

 Kenmotsu manifold. In this case; Ricci operator of M 

satisfy the following condition: 
 

   02  YQX  

 
for all X,Y in TM. Then, we find  
 

     0  YQYQ XX  .                                 (26) 



 
 
 
 
From this last equation, we have  
 

    0  YQQYYQQY XXXX  (27)                      

 
for all vector fields X,Y in TM. If we take the inner product 

of Equation (27) with  M  , then we find 

 

        0,,   YQQYYQgQYg XXXX
(28)              

 
and we continue the process, we get 
 

   

   YQYn

YQYS

XX

XX








22

0,
   

    ,,2 2 YQgYng XX                             (29) 

 
for all X,Y in TM. From  Equations (2) and (29)  
 

22 nQ   

 
and 
 

XnQX 22    

 
for all X in TM. In this case, we have  
 

   

 
 YXgn

YXng

YQXgYXS

,2

,2

,,

2

2











  

 
for all X,Y in TM. Then the proof is complete. 
 
 

LOCALLY  SYMMETRIC  KENMOTSU 

MANIFOLD 
 

Here, we prove that locally  symmetric  Kenmotsu 

manifolds have constant scalar curvature. In addition to if 
this type manifolds are quasi-conformal flat, then the 
manifold is Einstein manifold. On the other hand, we find 
that if locally  symmetric  Kenmotsu manifolds are 

concircular flat, then these manifolds have constant 

curvature and their curvature is given 
 122 nn

r  (r is 

scalar curvature of M). 
 
 

Lemma 1 
 

Let  gM ,,,,   be a locally  symmetric 

 Kenmotsu manifold. Then scalar curvature of M  is 

constant . 
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Proof    
 

Suppose that   gM ,,,,   is a locally  symmetric 

 Kenmotsu manifold. That is; Riemannian curvature 

tensor of M satisfy the following equation 
 

    0,2  ZYXRW  

 

where X,Y,Z and W are orthogonal to  . If we continue 

the process, we obtain 
 

       0,,   ZYXRZYXR WW              (30) 

 

for all X,W,Z orthogonal to  . Then the sum for 

121  ni of the relation (30), we get  

 

       0,,  ZXRZXS WW  . 

 
In this case; 
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   

   
0

,,

,,
, 
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




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 for all X,W,Z orthogonal to  . So, using Equations (9) 

and (15), we obtain, 
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If we continue the process, we get  
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  (31)                
 
M is locally  symmetric, so  

 

        0 ZWYX  . 

 
Then we find  
 

      .,,, 22 XZgZXgZXS WWW     (32)                                    

 

If we write ieZX   and we take the sum for 

121  ni  of the relation (32), we obtain  

 

  0Wdr  
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for all vector fields W in TM. Then, the proof is complete. 
 
 

Theorem  
 

Let  gM ,,,,   be a locally  symmetric 

 Kenmotsu manifold. If M is quasi-conformally flat, 

then M is Einstein manifold. 
 
 

Proof 
 

Suppose that   gM ,,,,   is a locally  symmetric 

 Kenmotsu manifold. Then  ZYXC ,  quasi-

conformal curvature tensor of M vanishes for any X,Y,Z in 
TM. That is, 
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      (33) 
 

for all X,Y,Z in TM. If we write   instead of X and Z and 

later we take the inner product of Equation (33) with 

 MW  , then we get  
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 (34) 
 

If we use Lemma 1 and we consider locally 

 symmetric then r is constant and     0 WY   

since Y and W orthogonal to  . So we have  

 

   WYgWYS ,,   
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1 22  ). In this 

case, M is Einstein Manifold. 
 
 
Theorem  
 
Let M be a locally  symmetric  Kenmotsu 

manifold. If M  is concircularly flat then M has got 

constant curvature and its curvature is 
 

.
122 nn

r
 

 
Proof  
 
Suppose that M is a locally  symmetric  Kenmotsu 

 
 
 
 
manifold. If M  is concircularly flat then we obtain 
 

 
 

    .,,
122

, YWXgXWYg
nn

r
WYXR 


    (35)     

 
If we consider Lemma 1 and the Equation (35), then we 
complete the proof. 
 
 
Example 
 

      0,0,0,,,,, 3  zyxRzyxM , where  zyx ,,  

are the standard coordinates in 
3R . The vector fields  
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y
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x
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


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







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are linearly independent at each point of M. Let g be 
Riemannian metric defined by 
 

22

222

z

dzdydx
g




 . 

 
Then we find  
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Let   be the 1-form defined by    3,eXgX   for any 

 .MX   Let   be a  1,1  tensor field defined by 

      0,, 31221  eeeee  . If we define 

   33 ,, eXgXe    for all vector fields X in TM 

and use the linearity of   and g , then we find 

 

           YXYXgYXgXXX   ,,,,1 2

 
for all vector fields X, Y in TM. In this case, 

 gM ,,,,   is an almost contact metric manifold. 

Suppose that  is Levi-Civita connection with respect to 

the metric  g. For all  RRCf ,3 , we get 
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and  
 

   fefee 232 ,  . In this case, from Kozsul’s Formula, 

we find  
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Let cbeaeX  21  and cebeaY  21  be 

vector fields in TM (Where a,b,c, Rcba ,, ). Then we 

get 21 eaebY  . In this case; 
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for all vector fields X,Y in TM. Hence  gM ,,,,   is 

an  Kenmotsu manifold. With the help of above 

results we can find the following: 
 

    
    
    bbaaeYXeRg

ccaaeYXeRg

ccbbeYXeRg







2

33

2

22

2

11

,,

,,

,,







 

 

and  
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Hence, M is an  Einstein manifold. Now, we take 

X,Y,Z  and W  orthogonal to  . Then we can write 
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In this case, if we compute   ZYXRW , , we find 
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Then,  
 

   0,2  ZYXRW  

 

for all vector fields X,Y,Z and W orthogonal to  . In this 

case, this manifold is a locally   symmetric 

 Kenmotsu manifold. In Lemma 1, we show that 

scalar curvature of a locally   symmetric 

 Kenmotsu manifold  is constant. Actually, if we 

compute scalar curvature for all vector fields X,Y 

orthogonal to  , we see that 
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This paper presents a novel hybrid oscillating inductive sensor circuit converting deflection oscillations 
into useful signal and thus being used to support an oscillatory circuit mechanism and management of 
their resulting oscillation in a real-time implementation. This circuit does not only detects and optimizes 
the deflections produced in an oscillation in instrumentation electronics, but also provide an improved 
sensory with high accuracy, sensitivity, responsiveness and operating range. The design therefore help 
in transforming the deflection deviations in the in and out movement of the core into useful output 
content. A simulation and derivation of the oscillating circuit in see-saw convulsion bar sensing system 
has been implemented. Simulation and derivations shows how the oscillating circuits of the bar are 
converted into frequency, duty cycle, current, voltages for further wireless applications. 
 
Key words: Differential inductive sensing, displacement inductance-to-frequency converter, deflection 
deviation, see-saw bar, oscillation, position sensing. 

 
 
INTRODUCTION 
 
Sensors have proven important in converting 
immeasurable quantities such as wind velocity, 
vibrations, oscillation, turning effects of forces, deviations, 
illness etc into qualitative and quantitative electrical signal 
suitable for real time implementation by an intelligent 
oscillation harvesting mechanism. For an accurate 
measurement of such oscillation parameter, an efficient 
oscillation detector is essential (Figure 1). 

This is capable of converting a see-saw convulsion bar 
into frequency response, duty cycle response, voltage 
response. The sensor output should be such that the 
oscillation/vibration, their motion, damping etc is 
determined. Based on the sensing inductive principle 

used, the designed circuit can be categorized into a 
vibration sensor and pressure sensor applied even in 
height  location  such  as;   sagging   and   oscillations   of 
electrical transmission line, turning moment in railroad, 
signal upgrade from degradation in GSM mask (Ezzat 
and Cheng, 2011; Edgarcio et al., 1988; Grover and 
Deller, 1999; Hameed et al., 2012).   

The sensor output should be such that electro-
mechanical deviations in oscillation circuit and their 
effects servomechanism are determined. The vibration 
sensor can be categorized according to the sensing 
element such as resistive, capacitive, inductive and linear 
variable differential transducer (Mohammed et  al.,  2012;  
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                                                                                          (a) 

                           

                                                                                           (b) 
 

 

Figure 1. (a) A balance see-saw of overhanging bar, (b) Differential manner of an overhanging see-

saw bar. 

 
 
 
Mohan et al., 2008). Piezo-resistive sensors have good 
linearity and acceptable sensitivity, but suffer from the 
problem of inaccuracies (Mohan et al., 2009; Ravindra, 
2006). Capacitive pressure/oscillation sensors exhibit 
features of higher sensitivity and lower temperature 
hysteresis,  but  they  are   usually   nonlinear   (Ravindra, 
2006; Saxena and Sahu, 1994; Slamwomir, 2007). 
Conventional LVDT-based pressure/oscillation sensors 
possess good linearity, highest sensitivity and lowest 
temperature hysteresis, but such devices have got bulky 
physical structures (Saxena and Sahu, 1994; Slamwomir, 
2007; Texas Instruments, “LM555 Data sheet”, 2003; 
Udaya and Duleepa, 2011). This paper presents a sensor 
capable of harnessing oscillations in circuits into pulse 
able signal. Each aspect of this finding has been put into 
different sections.  

 
 
STRUCTURAL MODEL AND DESIGN 

 
The structure of the proposed oscillating circuit is shown 
schematically in Figure 2. The oscillation of the actual component of 
the sensor varying differentially, maximizing the circuit variations 
and deviations into a derivable and pulse able signal is shown in 
Figure 3. As shown in Figures 2, 3 and 4, a vertical core of a 
varying height of 4 to 36 mm is embedded into an open stator made 

up of magnetic coils thereby providing the inductive change in 
relation to circuit vibrations. The oscillation of the circuit provides 
the force or pressure needed to bring about the inductance of the 

coil as the core is displaced in and out of the coils mounted in a 
stator of a servomechanism.  This  displacement  is  proportional  to 
the force or pressure and the inductance of the core. The timer 
circuit when connected to the coils in Figures 1 and 2 will give rise 

to Figures 3 and 4. This RL3R circuit gives us a square wave with a 
frequency depending on the inductance value of the coil as shown 
in Figure 5. 

 
 
MATHEMATICAL MODEL OF THE CIRCUIT 

 
A differential transducer is one that simultaneously senses two 

separate sources and provides an output proportional to the 
difference between the sensing. Considering the idea in Figure 4, 
the inductances of the two coils change in a differential manner 
when the overhanging bar is moving in a seesaw manner. At 
position „x‟, the inductance of the right hand side of the coil is given 
by Equation (1), while that of the left hand side is given by Equation 
(2), giving the total equation as follows: 

 

  
















 
 )1(1

2

0

2

0

rrTOTAL
l

x

l

AN

l

xl

l

x

l

AN
L 






                 (1) 

 

















 
 )1()(

2

0

2

0

rrrTOTAL
l

x

l

AN

l

xl

l

x

l

AN
L 






                     (2) 

 
Details of the derivation of equation 1 and 2 are shown in the 
APPENDIX A-1 to A-6. A linear relationship is shown in Figure 6 
demonstrating the in and out oscillation of the device. 
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Figure 2. Varying differential cores in a see-saw. 

 
 

 

 
 

Figure 3. Differential inductive system architecture. 

 
 
 
Frequency output for inductive change delta L 

 
The inductance of left inductor is given by L1 and can be expressed 
as: 

L1=Lfi-L1                    

L1=Lfi-L1                       

 
Whereas  the  inductance   of   second   inductor   is   given   by   L2 
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Figure 4. Signal produced from circuit oscillation and vibrations. 

 
 
 

 
 
 Figure 5. Voltage waveform from circuit oscillation. 
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Figure 6. A plot of the inductance variation with the displacement. 

 
 
 
L2=Lfo+L2             

L2=L2-Lfo                 

Lavg=  

 
The frequency of RL3R-timer circuit for single inductor is given by: 
 

f=1.58  

 
The frequency of the first inductor is:  

 

f1=1.58                                                                                (3) 

 
The frequency of the second inductor is: 
 

f2=1.58                                        (4) 

 
The frequency of total inductive change is: 
 

                   (5) 

 

 
 
Substituting the value of L1 in Equation (5) we get: 

 

                                                         (6) 

 
Now solving for the other case of ∆f2, we obtain; 

 

                          (7) 

 

                    (8) 

 
Substituting the value of L2 in Equation (7), 
 

                            (9) 

 

                              (10) 

 
The plot for frequencies of the in and out movement of the core in 
the coil is given thus. 
 
 
Frequency change as a function of displacement 

 
From the previous equation, the frequency change as a function of 
displacement is given thus as: 
 

)                (11) 

 
That of the second coil is; 
 

                 (12) 

 
The plot for frequencies of the in and out movement of the core in 
the coil is given as; these change in frequencies from Equations 
(11) and (12), gives a symmetrical behaviour with respect to the 
displacement produced by the oscillatory motion of the core. This 
aforementioned behaviour gave rise the plot in Figure 7(a) showing 
the reciprocal behaviour of the in and out movement, harnessing 
the deviations in terms of oscillation in servomechanism and 
electro-mechanical devices. The frequency change with the 
displacement is given in Figure 7(b). 
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(a) 

(b) 

 
  
Figure 7. (a): A plot of Frequency change in symmetrical variation with respect to core displacement, 

(b): A plot of Frequency with respect to core displacement. 

 
 
 
Frequency as a function of oscillations 

 
Generally, vibrations in movement can be described or expressed 
by the following equations. In the case the seesaw bar shown in 
Figures 2 through 4, we assume that the seesaw bar in the springs 
has a movement which is a simple harmonic motion according to 
the following equation;  
  

                           (13) 

 
The vibrations found in electronic circuit and in machines can be 
converted into useful frequencies as shown in Equations 14 and 15. 
 

                     (14) 

 

                 (15) 

To check the effect of the sea saw bar frequency, Equations (13), 
(14) and (15) are used. Assuming a coil of length of 20 mm, number 
of turns = 100, cross sectional area A=pi(r*r) where r=1 mm, an iron 
core with relative permeability 4728, and R= 1k ohm, then   by 
changing the value of fs, the plots for the output frequency as a 
measure of x is obtained. Figure 8 shows the effect of the circuit as 
it oscillates, converting the deviations into these useful frequency 
values when the harmonics from the see-saw in the convulsion are 
given as 10, 100, 1000 and 10,000 Hz respectively. 

 
 
SIMULATION RESULT AND ANALYSIS 
 
A simulation of the designed mathematical model and its 
necessary derivations for frequency, frequency 
hysteresis, voltage and the current responses are carried 
out. The results obtained confirm the mathematical 
derivation  plots  with  the  simulation.  Figure 9(a)  is  the  
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Figure 8. Plot of the Output Response for oscillating circuit for varying values of Fs. 

 
 
 
result of simulation of both circuits; the right and the left 
one using the same assumption that was used in the 
calculations. The green line represents the frequency 
output of the left side and the red one is for the circuit in 
the right hand side as a measure of the core 
displacement. Figure 9(b) shows the output frequency 
when the sea saw frequency fs= 100 Hz, for three time 
periods, in every period, the displacement value change 
from 0 to  and from  to 0.  

Figure 10(a) to (d) shows the result of simulation when 
the sea saw bar frequency is change. When the 
frequency of sea saw bar is 10 Hz, x changes from 0 to , 

and time t, is changed from 0 to 50 ms, 0 to 100 ms, 0 to 
1000 ms and 0 to 10000 ms according to Equation (15). 
The results obtained confirm those of the derivations 
shown in this work. A slight difference in simulation 
analytical deduction is due to the environmental effect on 
the circuit. The table for the different frequencies giving 
rise to frequency hysteresis is given in Table 1. This table 
gives rise to Figure 6, showing the frequencies of the 
see-saw behavior when the core is differentially in and 
out of its coil as the circuit oscillate. 

A linear relationship exist between the inductance of 
the first coil, which increases when the core is moving in, 
while the core for the second coil is moving out, with 
decrease in inductance. The inductance change  is 

calculated and plotted in Figure 6. These inductance 
change leads to a frequency change and hysteresis for 
the output of the timers as seen from derivations and 
simulation results. This shows that the frequency is 
decreasing when the core is going in and increases when 
the core goes out. At equilibrium state when the sea saw 
bar is horizontal, the displacement x is equal to half of the 
coil length,  and the value of the inductance for both coils 

is the same. This is clearly shown in Figure 6 at the point 
when x= 10 mm, the inductance L=4.67 mH for the two 
coils. The result of the inductance equality at this point is 
reflected to the frequency value as Figure 7. 

The main difference between derivations and 
simulation result is seen when the coil is almost fully out. 
From derivation point, when the coil is fully out x=0, the 
frequency is larger than 800 Mega Hz, which is very large 
compared to other frequency values which ranges from 
0.18 to 3.4 Mega Hz. On the other hand, simulation result  
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Figure 9. (a): A simulation of Frequency change in symmetrical variation with respect to core displacement, (b): Simulated 

Output for frequency with three time periods. 

 
 
 
shows that maximum frequency occurs when the core is 
fully out and this is at 3 MHz as shown Figure 7. 
Although, the result from derivations and simulation has 
shown that the sea saw bar frequency has no effect on 
the output frequency values, the frequency counter 
calculate the value which is equal to the time period of 
the timer output for every reading. So, if the sea saw 
frequency fs exceeds a certain value, the frequency 
counter will give wrong frequency output. This value is 
derived as shown in Equation (16). 

                 (16) 

 
 
Conclusion 

 
Differential sensing system architecture is proposed as 
shown in Figures 1 to 4. This consists of two coils with 
varying cores in which a change in the core position will 
result  in  inductance  change.  These  changes   can   be  



Deji et al.          347 
 
 
 

 
       (a) 

 
      (b) 

 
       (c) 

           Time of see saw (s)

0 5m 10m 15m 20m 25m 30m 35m 40m 45m 50m

1/ Period(V(U1:OUTPUT)) 1/ Period(V(U2:OUTPUT))

0

1.0M

2.0M

3.0M

fs = 10 Hz

           Time for seesa

0 10m 20m 30m 40m 50m 60m 70m 80m 90m 100m

1/ Period(V(U1:OUTPUT)) 1/ Period(V(U2:OUTPUT))

0

1.0M

2.0M

3.0M

fs= 10khz

 
 
Figure 10 (a-d): Simulation values for different harmonics in the see-saw. 
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Table 1. Simulation details of frequency hysteresis. 
 

X delta f1 delta f2 delta f 

0.001 0.109400729 8958.646289 4479.3778 

0.002 1692127.847 18912.4638 855520.16 

0.003 2257759.167 30037.02729 1143898.1 

0.004 2540873.66 42551.79359 1291712.7 

0.005 2710838.104 56734.72486 1383786.4 

0.006 2824187.656 72943.17702 1448565.4 

0.007 2905171.185 91644.4259 1498407.8 

0.008 2965919.533 113461.451 1539690.5 

0.009 3013174.592 139243.6828 1576209.1 

0.01 3050982.636 170180.1802 1610581.4 

0.011 3081919.134 207988.2244 1644953.7 

0.012 3107701.365 255243.2833 1681472.3 

0.013 3129518.39 315991.6318 1722755 

0.014 3148219.639 396975.1606 1772597.4 

0.015 3164428.091 510324.7128 1837376.4 

0.016 3178611.023 680289.1565 1929450.1 

0.017 3191125.789 963403.6494 2077264.7 

0.018 3202250.353 1529034.969 2365642.7 

0.019 3212204.17 3221162.707 3216683.4 

 
 
 
converted into frequency output in the processing part of 
the sensor using a timer circuit. Simulation of the 
proposed system shows a similar result with that of 
theoretical derivation. The sea saw bar frequency effect 
is checked and the limitation for this value. This was 
found in Equation (16). Finally, this novel design provides 
a platform for electro-mechanical and servomechanism 
system deviation in form of oscillation and vibration to be 
harvested into useful electrical signal by the help of 
designed differential inductive sensor using both coils 
transducers as shown in Figure 3. The result obtained 
appears to be at minimum value of 0.001% of FSO which 
serve as improvement and introduction frequency 
hysteresis results in both derivations and in simulations. 
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Appendix 1 
 
Inductance of the part containing the core L1 is given as: 
 

                                         (A-1) 

 
The inductance of the part with no core L2 is given as: 
 

                                           (A-2) 

 
The numbers of turns in the first and second inductors 
above the total number of the coil under consideration 
give by 
    

                                        (A-3) 

 
And, therefore, we know that 
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Similarly; 
 

                       (A-4) 

 
Substituting the values of N1 and N2 into equations 
above: 
 

  =                                  (A-5) 

 

=                                                  (A-6) 

 
The total inductance is the series sum of the individual 
inductances L1 and L2, given as: 
 

                                                                  (A-7) 
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